
Chapter 1 Abstract Vector Space

A vector space over a field K is a set V together with 2 binary operations:

+ : V × V → V (Addition) · : K × V → V (Scalar Multiplication)

subject to the following 8 rules for all u,v,w ∈ V and c, d ∈ K:

(+1 Addition Commutativity) u+ v = v + u (+2 Addition Associativity) (u+ v) +w = u+ (v +w)

(+3 Zero exists) ∃0 ∈ V : u+ 0 = u (+4 Additive Inverse exists) ∃u′ ∈ V : u+ u′ = 0 (u′ = −u)

(·1 Multiplication Associativity) (cd) · u = c · (d · u) (·2 Unity) 1 · u = u

(·3 Distributivity 1) c · (u+ v) = c · u+ c · v (·4 Distributivity 2) (c+ d) · u = c · u+ d · u

Elements of a vector space V are called vectors.
0 ∈ V is unique. For all v, −v is unique. (Uniqueness) u+ v = u+ v′ ⇔ v = v′ (Cancellation Law)
cu = 0 ⇔ c = 0 or u = 0.
A subset U ⊂ V is subspace if it is vector space:

(1 Zero exists) 0 ∈ U (2 Closure under addition) u,v ∈ U → u+ v ∈ U

(3 Closure under multiplication) u ∈ U, c ∈ K → cu ∈ U

Let S ⊂ V . Linear combination of S is any c1v1 + · · ·+ cnvn ∈ V with c1, · · · , cn ∈ K,v1, · · · ,vn ∈ S. Set of all l.c. is Span(S) ∈ V
If S = ∅, Span(S) = {0} and Span(V ) = V
(Subspace Criterion) U ⊂ V is subspace of V iff U is non-empty and c ∈ K,u,v ∈ U ⇒ cu+ v ∈ U .
{v1, · · · ,vn} is linearly dependent if c1v1 + · · ·+ cnvn = 0 for some ci ∈ K possibly not all zero.
{v1, · · · ,vn} is linearly independent if c1v1 + · · ·+ cnvn = 0 implies all ci = 0.
Ordered set B ⊂ V is basis for V iff B is l.i. and V = Span(B)
(Spanning Set Theorem) Let S = {v1, · · · ,vn} ⊂ V and U = Span(S).
U = Span(S \ {vk}) if vk is l.c. of other vectors. If U ̸= {0}, some subset of S is basis of U .
(Unique Representation Theorem) Let B = {b1, · · · ,bn} ⊂ V . Any v ∈ V is an unique l.c. of B iff B is basis of V .

[v]B =

c1...
cn

 ∈ Kn is coordinate vector of v relative to B and c1, · · · , cn are coordinates of v relative to B.

(Replacement Theorem) If V = Span(v1, · · · ,vn) and S = {u1, · · · ,um} ⊂ V is l.i. subset, then |S| = m ≤ n
All basis of V has same number of elements.
Dimension of V is dimV = |B| = n. dim{0} = 0. V is finite dimensional if dimV <∞. V is infinite dimensional if dimV = ∞.
(Basis Extension Theorem) Let dimV <∞ and U ⊂ V be subspace. L.i. S ⊂ U can be extended to basis of V and dimU ≤ dimV .
If U is subspace of V and dimU = dimV , then U = V .
(Basis Criterion) Let dimV = n ≥ 1 and S ⊂ V has n elements. If S is l.i. or S spans V , then S is basis of V .
Let U,W ⊂ V be subspaces. U +W = {u+w : u ∈ U,w ∈W}.
V = U ⊕W is direct sum of U and W iff V = U +W and U ∩W = {0}.
(Uniqueness of direct sum) V = U ⊕W iff every v ∈ V can be expressed uniquely as v = u+w, u ∈ U,w ∈W .
(Direct Sum Complement) Assume dimV <∞ and let U ⊂ V be subspace.
There exist subspace W ⊂ V called direct sum complement of U such that V = U ⊕W .
(Dimension formula) dimU + dimW = dim(U +W ) + dim(U ∩W ) and dimU + dimW = dim(U ⊕W )
Let U,W be vector spaces. Product of U,W is the set U ×W = {(u,w) : u ∈ U,w ∈W} with operations:

(u,w) + (u′,w′) = (u+ u′,w +w′) c · (u,w) = (cu, cw)

which makes U ×W a vector space with (0,0) ∈ U ×W .
U ×W = {(u,0) : u ∈ U} ⊕ {(0,w) : w ∈W} and dim(U ×W ) = dimU + dimW
Let U1, · · · , Un be subspace of V . If V = U1 + · · ·+ Un and Uj ∩

∑
i ̸=j Ui = {0} for all j. Then V = U1 ⊕ · · · ⊕ Un.

(Uniqueness of direct sum) V = U1 ⊕ · · · ⊕ Un iff every v ∈ V can be uniquely written as v = u1 + · · ·+ un where ui ∈ Ui
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Chapter 2 Linear Transformations and Matrices

Linear Transformation T : V →W is a map such that T (cu+ v) = cT (u) + T (v) for all u,v ∈ V, c ∈ K.
V is domain and W is target. Set of all l.t. T : V →W is L (V,W ).
Let S, T ∈ (V,W ), v ∈ V and c ∈ K. (S + T )(v) = Sv + Tu ∈W and (cT )(v) = cT (v) ∈W . This makes (V,W ) a vector space.
Any T ∈ (V,W ) is uniquely determined by image of any basis B of V .
Zero map O : V →W is given by O(v) = 0. Identity map I : V → V is given by I(v) = v.
T ∈ L (Kn,Km) is represented by m×n matrix A:

(
w1 . . . wn

)
. i-th column wi is image T (ei) of standard basis vector ei ∈ Kn.

Kernel (null space) Ker(T ) = {v ∈ V : T (v) = 0} is subspace of V .
Image (range) Im(T ) = {w ∈W : w = T (v) for some v ∈ V } is subspace of W .
If S ∈ L (U, V ) and T ∈ L (V,W ), then the composition T ◦ S ∈ L (U,W ) is linear. T 2 = T ◦ T .
T is one-to-one (injective) if T (u) = T (v) → u = v. T is onto (surjective) if every w ∈W exists v ∈ V such that T (v) = w.
T is isomorphism if both one-to-one and onto. If T ∈ L (V,W ) exists, V is isomorphic to W (V ≃W ).
(Proposition 2.10) T is onto ⇔ T (V ) =W ⇔ T maps spanning set to spanning set.
(Proposition 2.10) T is one-to-one ⇔ Ker(T ) = {0} ⇔ T maps from l.i. set to l.i. set ⇔ dimT (U) = dimU for any subspace U ⊂ V .
(Proposition 2.11) T is isomorphism → dimV = dimW and unique T−1 ∈ L (W,V ) exists such that T−1◦T = IV and T ◦T−1 = TW .
(Proposition 2.12) If S, T are isomorphism, then S ◦ T is isomorphism and (S ◦ T )−1 = T−1 ◦ S−1.
(Theorem 2.13) If B is basis of V , then coordinate mapping is isomorphism V ≃ Kn.

ψV,B : V → Kn v 7→ [v]B

[T ]
B
B′ ∈ L (Kn,Km) is matrix representing T with respect to bases B and B′. [T ]B if V =W and B = B′.

If A is m× n matrix and B is n× r matrix, (AB)ij =
∑n

k=1 aikbkj .
Trace Tr(A) =

∑n
i=1 aii and Tr(AB) = Tr(BA) (Proposition 2.16)

(Proposition 2.17) AB =
(
Ab1 · · · Abr

)
.

(Proposition 2.18) If A represent T ∈ L (Kn,Km) and B represent S ∈ L (Kr,Kn), then AB represent T ◦ S.
(Proposition 2.19) For S ∈ L (U, V ) and T ∈ L (V,W ) with basis B,B′,B′′ of U, V,W respectively, [T ]

B′

B′′ and [T ◦ S]BB′′ = [T ]
B′

B′′ [S]
B
B′

Kernal of T is null space NulA which is set of all solutions to Ax = 0.
Image of T is column space ColA which is set of l.c. of columns of A.
Row operations (similar to column operations): ri ↔ rj ri 7→ ri + crj ri 7→ cri
(Proposition 2.22) If A′ is A after row operations, NulA′ = NulA. If A′′ is A after column operations, ColA′′ = ColA.
Row echelon form (REF) is matrix with all zero rows at bottom and pivots equals 1 strictly right of pivot of rows about it.
Reduced row echelon form (RREF) is if each column containing pivot has zeros in entries other than pivot.
(Proposition 2.24) Row operations do not change linear dependency of column vectors.
(Corollary 2.25) RREF of matrix A is unique and uniquely determines spanning set of NulA that is RCEF.
Transpose AT is n×m matrix with entries (AT )ji = (A)ij . (AB)T = BTAT .
Rank of A = dimColA. Row rank of A = dimColAT . Nullity of A = dimNulA. Rank of A = Rank of AT (Theorem 2.29)
(Rank-Nullity Theorem) Let dimV <∞ and T ∈ L (V,W ). Then dim Im(T ) + dimKer(T ) = dimV .
Square matrix A is invertible if it represents isomorphism T . A−1A = AA−1 = I.
(Invertible Matrix Theorem) n× n matrix A is invertible iff any one of statements hold:

(1) ColA = Kn. (A is surjective) (2) NulA = {0}. Nullity of A = 0.

(3) Rank of A = Rank of AT = n. (4) RREF of A is I.

(Change of Basis Formula) There exists n× n PB
B′ such that [v]B′ = PB

B′ [v]B where PB
B′ = [I]

B
B′ .

PB
B′ is change-of-coordinate matrix from B to B′. It is invertible with inverse given by PB′

B = (PB
B′)−1. (Proposition 2.34)

(Proposition 2.35) For any bases B,B′,B′′ of V , PB′

B′′PB
B′ = PB

B′′ . PB
B′ = (PB′

E )−1PB
E .

(Theorem 2.36) Let T ∈ L (V, V ) and [T ]B = A, [T ]B′ = B,P = PB
B′ . Then B = PAP−1 and A is similar to B. (A ∼ B)

(Proposition 5.13) If A = PBP−1, q(A) = Pq(B)P−1 for any polynomial q(t).
(Proposition 2.38) Two polynomials in Kn [t] are same if they agree on n+ 1 distinct points.
Given n+ 1 distinct points t0, · · · , tn ∈ K (ti ̸= tj for i ̸= j), the evaluation map is

T : Kn [t] → Kn+1 p(t) 7→
(
p(t0) . . . p(tn)

)T
(Proposition 2.40) Choosing E = {1, t, · · · , tn} of Kn [t] and E ′ = {e0, · · · , en} of Kn+1.

T is represented by Vandermonde matrix: [T ]
E
E′

1 . . . tn0
...

. . .
...

1 . . . tnn

 and is invertible,

(Proposition 2.41) For k = 0, · · · , n, image of polynomial (of degree n) pk(t) =
∏

0≤j≤n
j ̸=k

t−tj
tk−tj

under T is ek ∈ Kn+1.

Image of polynomial p(t) =
∑n

i=0 λipi(t) under T is Lagrange interpolation polynomial
(
λ0 . . . λn

)T ∈ Kn+1.
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Chapter 3 Determinants

Determinant is a function det :Mn×n(K) → K which satisfies:

1. Multilinear: det
(
. . . w cu+ v . . .

)
= cdet

(
. . . w u . . .

)
+ det

(
. . . w v . . .

)
2. Alternating: det

(
. . . w u v . . .

)
= −det

(
. . . w v u . . .

)
3. det(I) = 1

(Proposition 3.2) Determinant of triangular (or diagonal) matrix is product of its diagonal entries.
(Leibniz Expansion / Expansion by Permutations) detA =

∑
σ∈Sn

ϵ(σ)aσ(1)1 · · · aσ(n)n where Sn: set of all permutations of {1, · · · , n}
Sign of permutation ϵ(σ): +1 if σ ∈ Sn can be obtained by even number of transpositions, −1 if odd number of transpositions.
Any function D satisfying (1),(2) of definition of determinant is scalar multiple c · det where c = D(I).
det(AB) = det(A) det(B). A is invertible iff det(A) ̸= 0. det(A−1) = det(A)−1. A ∼ B −→ det(A) = det(B).
If dimV <∞, determinant of T ∈ L (V, V ) is det(T ) = det(A) for any square matrix A representing T .

det

(
Ak×k Bk×l

Ol×k Cl×l

)
= det

(
Ak×k Ok×l

Bl×k Cl×l

)
= det(Ak×k) det(Cl×l).

(Proposition 3.9) Column operations are same as multiplying on the right by elementary matrices (1 in diagonal, 0 in others)

1. E =


. . .

1 c
0 1

. . .

: Adding multiple of i-th column to j-th column. det(E) = 1.

2. E =


. . .

c
. . .

: Scalar multiplying i-th column bu c. det(E) = c.

3. E =


. . .

0 1
1 0

. . .

: Interchanging two columns. det(E) = −1.

(Proposition 3.10) Row operations are same as multiplying on the left by elementary matrices.
(Theorem 3.11) For any square matrix A, det(A) = det(A∗).
(Theorem 3.12) det(A) is n-dimensional signed volume of parallelepiped P = {c1v1 + · · ·+ cnvn : 0 ≤ ci ≤ 1} ⊂ Rn.
It is spanned by columns of A. Volume = |det(A)|
Let B = {v1, · · · ,vn} ⊂ Rn be a basis. B is positively oriented if det

(
v1 . . . vn

)
> 0. Otherwise, B is negatively oriented.

(Laplace Expansion / Expansion by Cofactors) For any i, j,
Cij = (−1)i+j det(Aij) are cofactors. Aij is submatrix from A by deleting i-th row and j-th column.

1. Expansion by rows: det(A) = ai1Ci1 + · · ·+ ainCin

2. Expansion by columns: det(A) = a1jC1j + · · ·+ anjCnj

(Cramer’s Rule) If A is invertible, solution to Ax = b is given by x =

x1...
xn

 where xi =
det(Ai)
det(A) .

Ai is obtained by replacing i-th column of A with b.

(Theorem 3.16) If A is invertible, cofactor matrix C = (Cij) and adjugate matrix adj(A) = CT . A−1 = adj(A)
det(A) .
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Chapter 4 Inner Product Spaces

Real dot product of u =

u1...
un

 ,v =

v1...
vn

 ∈ Cn is defined to be u · v = v∗u = u∗v =
∑n

i=1 uivi ∈ C.

(Proposition 4.2) For any A = (aij) ∈Mm×n(R), then aij = e′i ·Aej .
{e1, · · · , en} is standard basis for Rn and {e′1, · · · , e′m} is standard basis for Rm.

If A =

aT1
...

aTm

 is m× k real matrix and B =
(
b1 . . . bn

)
is k × n real matrix, then AB =

a1 · b1 . . . a1 · bn

...
. . .

...
an · b1 . . . an · bn


Inner product is binary operator ⟨ , ⟩ : V × V → R(C) satisfying for any u,v,w ∈ V and c ∈ R(C):

1. Commutativity: ⟨u,v⟩ = ⟨v,u⟩ (⟨v,u⟩)

2. Linearity: ⟨cu+ v,w⟩ = c ⟨u,w⟩+ ⟨v,w⟩

3. Positivity: ⟨u,u⟩ ≥ 0 and ⟨u,u⟩ = 0 ⇔ u = 0

Euclidean space is V = Rn equipped with dot product as inner product.
Norm (length) of v ∈ V is non-negative scalar ∥v∥ =

√
⟨v,v⟩ ∈ R≥0.

Unit vector is vector u ∈ V with ∥u∥ = 1. Given 0 ̸= v ∈ V , vector v
∥v∥ has unit length and is the normalization of v.

Distance between u,v ∈ V dist(u,v) = ∥u− v∥.
(Law of Cosine) The angle 0 ≤ θ ≤ π between non-zero u,v ∈ V is defined by ⟨u,v⟩ = ∥u∥∥v∥ cos θ.
Two vectors u,v ∈ V are orthogonal (perpendicular) to each other if ⟨u,v⟩ = 0.
(Pythagorean Theorem) Let u,v ∈ V , If ⟨u,v⟩ = 0, then ∥u+ v∥2 = ∥u∥2 + ∥v∥2.
(Cauchy-Schwarz Inequality) For all u,v ∈ V , |⟨u,v⟩| ≤ ∥u∥∥v∥.
(Triangle Inequality) ∥u+ v∥ ≤ ∥u∥+ ∥v∥.
Let S = {u1, · · · ,ur} ⊂ V be finite set. S is orthogonal set if ⟨ui,uj⟩ = 0 for all i ̸= j.
If in addition S is basis of V , S is orthogonal basis for V . If in addition all vectors in S has unit norm, S is orthonormal basis for V .

Standard basis {e1, · · · , en} for Rn is orthonormal basis ei · ej = δij =

{
1 if i = j

0 if i ̸= j
where δij is Kronecker delta.

(Proposition 4.13) Let B = {b1, · · · ,bn} be o.g. basis for V . Then coordinate mapping with respect to B is

ψV,B : V → Rn v 7→ [v]B =

c1...
cn

 where ci =
⟨v,bi⟩
⟨bi,bi⟩

, i = 1, · · · , n

(Corollary 4.14) For A = (aij) = [T ]
B
B′ with respect to basis B = {v1, · · · ,vn} ⊂ V and o.n. basis B′ = {w1, · · · ,wn} ⊂W ,

then aij = ⟨w, Tvj⟩.
Orthogonal complement of U is subset U⊥ = {v ∈ V : ⟨v,u⟩ = 0 for any u ∈ U}.
(Proposition 4.16) U⊥ ⊂ V is subspace. U ⊂ (U⊥)⊥. u ∈ U⊥ iff ⟨u,v⟩ = 0 for all v ∈ U .
(Proposition 4.17) Let A ∈Mn×n(R). (ColAT )⊥ = NulA, (ColA)⊥ = NulAT with respect to standard dot product on Rn and Rm.

(Proposition 4.18) O.g. projection of b onto u is given by Proju(b) = ⟨b, e⟩ e = ⟨b,u⟩
⟨u,u⟩u where e = u

∥u∥ is normalization of u.

(Gram-Schmidt Process) Let dimV = n and {x1, · · · ,xn} be basis for V .

u1 = x1 u2 = x2 − Proju1
(x2) uk = xk −

(
k−1∑
i=0

Projui
(xk)

)

Then B = {u1, · · · ,un} is o.g. basis for V . For all 1 ≤ k ≤ n, Span(u1, · · · ,uk) = Span(x1, · · · ,xk)
(Corollary 4.20) Any finite dimensional inner product space has an o.n. basis.
(Orthogonal Decomposition Theorem) Let dimV <∞ and U ⊂ V be subspace.
Each v ∈ V can be written uniquely in form v = v|| + v⊥ where v|| ∈ U and v⊥ ∈ U⊥. Therefore, V = U ⊕ U⊥ and U ∩ U⊥ = {0}.
(Corollary 4.22) If dimV <∞ and U ⊂ V be a subspace. (U⊥)⊥ = U . (Not true if dimV = ∞)
(Proposition 4.23) If {u1, · · · ,ur} is orthonormal basis for U ⊂ Rn with respect to dot product, ProjU (x) = (x·u1)u1+· · ·+(x·ur)ur.
If P =

(
u1 . . . ur

)
is n× r matrix, then ProjU (x) = PP∗x

Projection matrix is n× n matrix M such that M2 = M. It is orthogonal projection matrix if in addition M∗ = M.
(Best Approximation Theorem) Let U be subspace of Rn and x ∈ Rn. Then ∥x− ProjU (x)∥ ≤ ∥x− u∥ for any u ∈ U .
ProjU (x) ∈ U is closest point in U to x.
(Riesz Representation Theorem) If dimV <∞ and T ∈ L (V,R), then there exists unique vector u ∈ V such that T (v) = ⟨u,v⟩.
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Chapter 5 Spectral Theory

T ∈ L (V, V ) is l.i. and is represented by A ∈Mn×n(K) if dimV <∞. D is diagonal matrix consisting of corresponding eigenvalues.

Eigenvector of T is non-zero vector u ∈ V such that Tu = λu for some scalar λ ∈ K. λ is eigenvalue.
Space Vλ = {u : Tu = λu} ⊂ V is eigenspace of λ. If finite set of eigenvectors form a basis of V , it is eigenbasis.
(Proposition 5.2) Vλ = Ker(T − λI) is non-zero subspace of V . (0 ∈ Vλ)
(Proposition 5.3) If dimV <∞, λ is eigenvalue of T iff det(T − λI) = 0.
(Proposition 5.4) λ of triangular matrix are given by entries on main diagonal.
(Theorem 5.5) Eigenvector set {v1, · · · ,vr} is l.i. if it corresponds to distinct λ1, · · · , λr.
p(λ) = det(T − λI) is characteristic polynomial over K of degree n. Eigenvalues are roots of p(λ) = 0.
(Proposition 5.7) For p(λ), top term is λn with coefficient (−1)n, coefficient of λn−1 Tr(A), constant term is det(A).
Geometric multiplicity of λi is dimVλi

. Algebraic multiplicity of λi is number of factors (λ− λi) in p(λ).
(Proposition 5.9) If K = C, a.m. of all eigenvalues add up to dimC V = n. (Every complex A has n eigenvalues)
(Corollary 5.10) Tr(A) is sum of all complex eigenvalues. det(A) is product of all complex eigenvalues.
(Proposition 5.11) If A ∼ B, they have same determinant, trace, charpoly, eigenvalues, a.m. and g.m..
A is diagonalizable iff A ∼ D (A = PDP−1)
(Diagonalization Theorem) A is diagonalizable iff A has n linearly independent eigenvectors.
Columns of P are eigenvectors of A and D is diagonal matrix consisting of corresponding eigenvalues.
T is diagonalizable of V has an eigenbasis of T .
(Corollary 5.16) T is diagonalizable iff V = Vλ1 ⊕ · · · ⊕ Vλr with distinct λ1, · · · , λr ∈ K.
(Corollary 5.17) T has n different eigenvalues −→ diagonalizable.
(Corollary 5.18) T is diagonalizable −→ a.m. = g.m. for λi. a.m. = g.m. for λi and a.m. add up to dimV = n −→ T is diagonalizable.
A is symmetric if AT = A.
(Proposition 5.20) A is symmetric iff u ·Av = Au · v.
(Theorem 5.21) If A is symmetric, then different eigenspaces are orthogonal to each other.
Matrix A is orthogonally diagonalizable if A = PDP−1 = PDPT for some o.g. matrix P and D.
(Theorem 5.23) If A is a real symmetric matrix, then all eigenvalues are real. (charpoly has n real roots)
(Theorem 5.24) A is symmetric iff it is o.g. diagonalizable.

Chapter 6 Positive Definite Matrices and SVD

Assume dimV <∞.
Bilinear form on V is a real-valued function f(x,y) in two variables that is linear in both arguments x,y ∈ V .
Any bilinear form on Rn is of form f(x,y) = x∗Ay for some matrix A.
Let A be real symmetric. It is positive (semi)definite if x∗Ax = Ax · x > (≥)0 for all non-zero x ∈ Rn.
Any inner product on Rn is of form ⟨x,y⟩ = x∗Ay for some p.d. matrix A.
Symmetric matrix A is +ve.(semi)d. iff λi > (≥)0 for all i. (→ det(A) > (≥)0)
(Theorem 6.7) Let A be +ve.(semi)d. matrix. There exists unique +ve.(semi)d. matrix B such that B2 = A.

B =
√
A is square root of A. If A = PDP∗,

√
A = PD

1
2P∗.

√
A = q(A) for some polynomial q(t).

If B commutes with p.(semi)d. A, then it commutes with
√
A.

Let A be any m× n matrix. A∗A is +ve.(semi)d.. Absolute value of A |A| =
√
A∗A.

Any +ve.(semi)d. matrix is of form A∗A for some A.
Singular values of A is eigenvalues σi of |A|.
If A rank r, then we have r non-zero singular values arranged in descending order. (σ1 ≥ · · · ≥ σr > 0).
(Singular Value Decomposition) Let A be m× n matrix with rank r. A = UΣV∗. U,V are m×m,n× n o.g. matrix respectively.
Σ is m× n quasi-diagonal matrix consisting of r non-zero singular values σ1, · · · , σr of A.
For any real square matrix A, we have polar decomposition A = PH where P = UV∗ is o.g. and H = VΣV∗ is +ve.(semi)d..
Columns {u1, · · · ,ur} is o.n. basis of ColA. Columns {ur+1, · · · ,um} is o.n. basis of Nul(A∗).
Columns {v1, · · · ,vr} is o.n. basis of RowA = ColA∗. {vr+1, · · · ,vn} is o.n. basis of NulA.

Let Ur,Vr be submatrix consisting of first r columns, A =
(
Ur ∗

)(D O
O O

)(
V∗

r

∗

)
= UrDV∗

r .

Pseudo-inverse of A is A+ = VrD
−1U∗

r . Given equation Ax = b, least square solution is given by x̂ = A+b = VrD
−1U∗

rb.
Matrix norm ∥A∥ = max|v|=1∥Av∥.
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Chapter 7 Complex Matrices

Let T ∈ L (V,W ). Adjoint of T is l.t. T ∗ ∈ L (W,V ) satisfying ⟨Tv,w⟩W = ⟨v, T ∗w⟩ for all v ∈ V,w ∈W .
If dimV <∞, then T ∗ exists and is unique.
If S ∈ L (U, V ) and T, T ′ ∈ L (V,W ) such that adjoints exist, (cT + T ′ + T ∗)∗ = cT ∗ + T ′∗ + T . (T ◦ S) = S∗ ◦ T ∗.

In case of Cn with standard dot product, if T is represented by A, then T ∗ is represented by conjugate transpose A∗ = A
T
.

((aij)
∗ = (aji)). (AB)∗ = B∗A∗.

T is self-adjoint if T = T ∗. (⟨Tv,w⟩ = ⟨v, Tw⟩ for all v,w ∈ V ).
If T is self-adjoint, different eigenspaces are orthogonal to each other, all λ are real, and T has o.n. eigenbasis if dimV <∞.
U is unitary matrix if is square matrix and consists of o.n. columns under complex dot product. U−1 = U∗. |det(U)| = 1.
Set of unitary matrices is U(n). In×n ∈ U(n). If U,V ∈ U(n), U−1,UV ∈ U(n).
If λ ∈ C is eigenvalue of U, then |λ| = 1.
A is unitarily equivalent to B if there exists unitary U such that A = UBU∗.
(Schur’s Lemma) Any complex square matrix A is unitarily equivalent to an upper triangular matrix.
Steps:

1. Pick an eigenvector v ∈ Cn with eigenvalue λ. By Gram-Schmidt Process, extend to o.n. basis B = {v,u2, · · · ,un} of Cn.

2. Matrix U′ with column B is unitary. We have block form U′∗AU′ =

(
λ ∗
0 An−1

)
Repeat this process by picking another eigenvector until an upper triangular matrix T is obtained.

If two real matrices A ∼ B in K = C, then A ∼ B in K = R.
If A = UBU∗ for some U ∈ U(n), then A = PBPT for some P ∈ O(n).
Note: If det(X+ iY) ̸= 0, then det(X+ λY) is non-zero polynomial.
A is unitarily diagonalizable if it is unitarily equivalent to diagonal matrix A = UDU−1 = UDU∗.
A is Hermitian if A = A∗.
(Spectral Theorem for Hermitian Matrices)
Hermitian =⇒ eigenvectors from different eigenspaces are o.g. + real λ + unitarily diagonalizable.
Unitarily diagonalizable + all real λ =⇒ A is Hermitian.
L.i. T ∈ L (V, V ) is normal if TT ∗ = T∗T . (AA∗ = A∗A)
E.g. Hermitian matrix, unitary matrix, skew-hermitian matrix, complex symmetric and orthogonal matrices.
Let T ∈ L (V, V ) be normal operator. For all v ∈ V , ∥Tv∥ = ∥T ∗v∥. If λ is eigenvalue of T , λ is eigenvalue of T ∗.
Eigenvectors corresponding to different eigenvalues are orthogonal to each other.
Upper triangular matrix is normal iff it is diagonal.
Square matrix A is unitarily diagonalizable iff it is normal. (For dimV <∞, V has o.n. eigenbasis of T ∈ L (V, V ) iff it is normal).

Chapter 8 Invariant Subspaces

Let T ∈ L (V, V ), U ⊂ V be T -invariant subspace.

A subspace U is T -invariant subspace if T (U) ⊂ U . If U is T -invariant, we have restriction T |U : U −→ U .
Let v ∈ V . Uv = Span(v, Tv, T 2v, · · · ) is the cyclic subspace of T generated by cyclic vector v ∈ V .
Cyclic subspace Uv of T is T -invariant subspace and is spanned by first r elements where r = dimUv if dimV <∞.
Assume V is direct sum of T -invariant subspaces V = U1 ⊕ · · · ⊕ Uk. Let v = u1 + · · ·+ uk be unique decomposition.
Then T (v) = T1(u1) + · · ·+ Tk(uk) where Ti = T |Ui . We write T = T1 ⊕ · · · ⊕ Tk.
Conversely, V is direct sum of T -invariant subspaces Ui = Dom(Ti).

If Ti is reprsented by matrix square Ai, then T is represented by A =

 A1 O
. . .

O Ak

.

Let V = U ⊕W . square matrix AU represents T |U , then T is represented by A =

(
AU ∗
O ∗

)
.

Let V = U ⊕ U⊥. U⊥ is T ∗-invariant. If dimV <∞ and T is normal, U⊥ is T -invariant.
If T is normal and U is T ∗-invariant, then (T |U ) = T ∗|U ∈ L (U,U) and T |U is normal.
Charpoly p|U (λ) of T |U divides p(λ). (p(λ) = p|U (λ)q(λ) for some polynomial q(λ))
(Cayley-Hamilton Theorem) If p(λ) is charpoly of T , then p(T ) = O.
Minimal polynomial m(λ) is unique polynomial such that m(T ) = O with leading coefficient 1.
If p(λ) be such that p(T ) = O, then m(λ) divides p(λ) (p(λ) = m(λ)q(λ) for some polynomial q(λ))
Set of roots of m(λ) consist of all eigenvalues of T .
(Primary Decomposition Theorem)
If m(λ) = p1(λ) · · · pk(λ) where pi(λ) and pj(λ) are relatively prime for i ̸= j, then V = Ker(p1(T ))⊕ · · · ⊕Ker(pk(T )).
T is diagonalizable iff m(λ) only has distinct linear factors.
Let V be inner product space. T is diagonalizable =⇒ T |U is also diagonalizable. T is normal =⇒ T |U is also normal.
(Spectral Theorem of Commuting Operators)
Let {Ti}ki=1 ⊂ L (V, V ) be set (dimV ≤ ∞) of diagonalizable l.t.. TiTj = TjTi for all i, j iff they can be simultaneously diagonalized.
If each Ti is normal, they can be simultaneously unitarily diagonalized.
(Spectral Theorem of Commuting Matrices) Same with Spectral Theorem of Commuting Operators but Ai represents Ti for all i.
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Chapter 9 Canonical Form

Let dimV <∞, T ∈ L (V, V ) and S = T − λI.
Generalized eigenspace is invariant subspace of form Ker(T − λI)m for some λ ∈ C,m ∈ N.
T is nilpotent if Tm = O for some positive integer m.
Let v ∈ V be vector such that Skv = 0 but Sk−1v ̸= 0. Let Uv be S-invariant cyclic subspace.
dimUv = k with basis {Sk−1v, · · · , Sv,v} called Jordan chain of size k. For r ≤ k, Ker(Sr) ∩Uv is spanned by first r basis vectors.

Matrix representing T = S+λI restricted to Uv is given by Jordan block of size k×k and eigenvalue λ: J
(k)
λ =



λ 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 . . . . . . 0 λ


.

V admits a basis of Jordan chains B = {Sk1−1v1, · · · ,v1} ∪ {Sk2−1v2, · · · ,v2} ∪ · · · ∪ {SkN−1vN , · · · ,vN} for some integers N .

In terms of T -invariant cyclic subspaces V = Uv1
⊕ · · · ⊕ UvN

where T |Uvi
is represented by Jordan block J

(ki)
λ .

Combination of Jordan blocks is uniquely determined by T .
Steps to find Jordan basis P:

1. We first find Jordan basis of Im(S) : Bu =
⋃N

i=1{Ski−1ui. · · · ,ui} for some ui ∈ Im(S).

2. Since there exists vi ∈ V such that ui = Svi, We have collection of Jordan chains Bv =
⋃N

i=1{Skivi. · · · ,vi} after adding vi.

3. Extend Bv to basis of B of V by adding some vectors w1, · · · ,wk ∈ V .

4. There exists w′
i ∈ Span(Bv) such that Swi = Sw′

i.

Modifying wi 7→ wi −w′
i, we have Jordan chain basis B =

⋃N
i=1{Skivi. · · · ,vi} ∪ {w1} ∪ · · · ∪ {wk} of V .

(Jordan Canonical Form) There exist basis of V such that T is represented by J = J
(k1)
λ1

⊕ · · · ⊕ J
(kN )
λN

where λi is eigenvalues of T .
Any A ∈Mn×n(C) is similar to Jordan Canonical Form J. Decomposition is unique up to permuting order of Jordan blocks. Note:
Orthonormal basis may not exist.
Eigenvalues λ1, · · · , λk are entries of diagonal.
Charpoly p(λ) = (λ− λ1)

n1 · · · (λ− λk)
nk and a.m. ni is number of occurences of λi on diagonal.

Minipoly m(λ) = (λ− λ1)
m1 · · · (λ− λk)

mk where mi is size of largest λi-block in A. G.m. of λi is number of λi-blocks in A.
If each eigenvalue corresponds to unique block, steps to find P (Do not work if there are multiples Jordan blocks of same eigenvalue):

1. For each eigenvectors v1 = v with eigenvalue λ, solve λi such that (T − λI)vi = vi−1 until no solution found.

2. Collection {v1, · · · ,vk} is basis corresponding to Jordan block J
(k)
λ . Repeat with all eigenvectors.

We can use JCF to prove

1. Cayley-Hamilton Theorem holds

2. A is diagonalizable iff m(λ) only has linear factors

3. A is similar to upper triangulat matrix and AT

Let B = {v, Tv, · · · , T r−1v} be basis of Uv. T |Uv is represented by companion matrix C(g) =



0 . . . . . . 0 −a0

1
. . .

...
...

0
. . .

. . .
...

...
...

. . .
. . . 0 −ar−2

0 . . . . . . 1 −ar−1


of g(λ).

g(λ) = p|Uv(λ) = λr + ar−1λ
r−1 + · · ·+ a0 is charpoly and minipoly of T |Uv .

(Rational Canonical Form)
V can be decomposed into T -invariant cyclic subspaces V = Uv1

⊕ · · · ⊕ Uvk
such that if gi(λ) is charpoly and minipoly of T |Uvi

:
gi(λ) divides gi+1(λ), p(λ) = g1(λ) · · · gk(λ) and m(λ) = gk(λ).

Collection of invariant factors {g1(λ), · · · , gk(λ)} is uniquely determined by T . T is represented by A =

 C(g1) O
. . .

O C(gk)


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